In this paper, we introduce an Adaptive Graph Signal Processing with Dynamic Semantic Alignment (AGSP DSA) framework to perform robust multimodal data fusion over heterogeneous sources, including text, audio, and images. The requested approach uses a dual-graph construction to learn both intra-modal and inter-modal relations, spectral graph filtering to boost the informative signals, and effective node embedding with Multi-scale Graph Convolutional Networks (GCNs). Semantic aware attention mechanism: each modality may dynamically contribute to the context with respect to contextual relevance. The experimental outcomes on three benchmark datasets, including CMU-MOSEI, AVE, and MM-IMDB, show that AGSP-DSA performs as the state of the art. More precisely, it achieves 95.3% accuracy, 0.936 F1-score, and 0.924 mAP on CMU-MOSEI, improving MM-GNN by 2.6 percent in accuracy. It gets 93.4% accuracy and 0.911 F1-score on AVE and 91.8% accuracy and 0.886 F1-score on MM-IMDB, which demonstrate good generalization and robustness in the missing modality setting. These findings verify the efficiency of AGSP-DSA in promoting multimodal learning in sentiment analysis, event recognition and multimedia classification.
Multimodal Sentiment Analysis integrates Linguistic, Visual, and Acoustic. Mainstream approaches based on modality-invariant and modality-specific factorization or on complex fusion still rely on spatiotemporal mixed modeling. This ignores spatiotemporal heterogeneity, leading to spatiotemporal information asymmetry and thus limited performance. Hence, we propose TSDA, Temporal-Spatial Decouple before Act, which explicitly decouples each modality into temporal dynamics and spatial structural context before any interaction. For every modality, a temporal encoder and a spatial encoder project signals into separate temporal and spatial body. Factor-Consistent Cross-Modal Alignment then aligns temporal features only with their temporal counterparts across modalities, and spatial features only with their spatial counterparts. Factor specific supervision and decorrelation regularization reduce cross factor leakage while preserving complementarity. A Gated Recouple module subsequently recouples the aligned streams for task. Extensive experiments show that TSDA outperforms baselines. Ablation analysis studies confirm the necessity and interpretability of the design.
Most Multimodal Sentiment Analysis research has focused on point-wise regression. While straightforward, this approach is sensitive to label noise and neglects whether one sample is more positive than another, resulting in unstable predictions and poor correlation alignment. Pairwise ordinal learning frameworks emerged to address this gap, capturing relative order by learning from comparisons. Yet, they introduce two new trade-offs: First, they assign uniform importance to all comparisons, failing to adaptively focus on hard-to-rank samples. Second, they employ static ranking margins, which fail to reflect the varying semantic distances between sentiment groups. To address this, we propose a Two-Stage Group-wise Ranking and Calibration Framework (GRCF) that adapts the philosophy of Group Relative Policy Optimization (GRPO). Our framework resolves these trade-offs by simultaneously preserving relative ordinal structure, ensuring absolute score calibration, and adaptively focusing on difficult samples. Specifically, Stage 1 introduces a GRPO-inspired Advantage-Weighted Dynamic Margin Ranking Loss to build a fine-grained ordinal structure. Stage 2 then employs an MAE-driven objective to align prediction magnitudes. To validate its generalizability, we extend GRCF to classification tasks, including multimodal humor detection and sarcasm detection. GRCF achieves state-of-the-art performance on core regression benchmarks, while also showing strong generalizability in classification tasks.
Memes are a dominant medium for online communication and manipulation because meaning emerges from interactions between embedded text, imagery, and cultural context. Existing meme research is distributed across tasks (hate, misogyny, propaganda, sentiment, humour) and languages, which limits cross-domain generalization. To address this gap we propose MemeLens, a unified multilingual and multitask explanation-enhanced Vision Language Model (VLM) for meme understanding. We consolidate 38 public meme datasets, filter and map dataset-specific labels into a shared taxonomy of $20$ tasks spanning harm, targets, figurative/pragmatic intent, and affect. We present a comprehensive empirical analysis across modeling paradigms, task categories, and datasets. Our findings suggest that robust meme understanding requires multimodal training, exhibits substantial variation across semantic categories, and remains sensitive to over-specialization when models are fine-tuned on individual datasets rather than trained in a unified setting. We will make the experimental resources and datasets publicly available for the community.
Multimodal large language models (MLLMs) have demonstrated strong performance on vision-language tasks, yet their effectiveness on multimodal sentiment analysis remains constrained by the scarcity of high-quality training data, which limits accurate multimodal understanding and generalization. To alleviate this bottleneck, we leverage diffusion models to perform semantics-preserving augmentation on the video and audio modalities, expanding the multimodal training distribution. However, increasing data quantity alone is insufficient, as diffusion-generated samples exhibit substantial quality variation and noisy augmentations may degrade performance. We therefore propose DaQ-MSA (Denoising and Qualifying Diffusion Augmentations for Multimodal Sentiment Analysis), which introduces a quality scoring module to evaluate the reliability of augmented samples and assign adaptive training weights. By down-weighting low-quality samples and emphasizing high-fidelity ones, DaQ-MSA enables more stable learning. By integrating the generative capability of diffusion models with the semantic understanding of MLLMs, our approach provides a robust and generalizable automated augmentation strategy for training MLLMs without any human annotation or additional supervision.
Multimodal emotion understanding requires effective integration of text, audio, and visual modalities for both discrete emotion recognition and continuous sentiment analysis. We present EGMF, a unified framework combining expert-guided multimodal fusion with large language models. Our approach features three specialized expert networks--a fine-grained local expert for subtle emotional nuances, a semantic correlation expert for cross-modal relationships, and a global context expert for long-range dependencies--adaptively integrated through hierarchical dynamic gating for context-aware feature selection. Enhanced multimodal representations are integrated with LLMs via pseudo token injection and prompt-based conditioning, enabling a single generative framework to handle both classification and regression through natural language generation. We employ LoRA fine-tuning for computational efficiency. Experiments on bilingual benchmarks (MELD, CHERMA, MOSEI, SIMS-V2) demonstrate consistent improvements over state-of-the-art methods, with superior cross-lingual robustness revealing universal patterns in multimodal emotional expressions across English and Chinese. We will release the source code publicly.
Multimodal aspect-based sentiment analysis (MABSA) aims to identify aspect-level sentiments by jointly modeling textual and visual information, which is essential for fine-grained opinion understanding in social media. Existing approaches mainly rely on discriminative classification with complex multimodal fusion, yet lacking explicit sentiment explainability. In this paper, we reformulate MABSA as a generative and explainable task, proposing a unified framework that simultaneously predicts aspect-level sentiment and generates natural language explanations. Based on multimodal large language models (MLLMs), our approach employs a prompt-based generative paradigm, jointly producing sentiment and explanation. To further enhance aspect-oriented reasoning capabilities, we propose a dependency-syntax-guided sentiment cue strategy. This strategy prunes and textualizes the aspect-centered dependency syntax tree, guiding the model to distinguish different sentiment aspects and enhancing its explainability. To enable explainability, we use MLLMs to construct new datasets with sentiment explanations to fine-tune. Experiments show that our approach not only achieves consistent gains in sentiment classification accuracy, but also produces faithful, aspect-grounded explanations.
Multimodal sentiment analysis is a key technology in the fields of human-computer interaction and affective computing. Accurately recognizing human emotional states is crucial for facilitating smooth communication between humans and machines. Despite some progress in multimodal sentiment analysis research, numerous challenges remain. The first challenge is the limited and insufficiently rich features extracted from single modality data. Secondly, most studies focus only on the consistency of inter-modal feature information, neglecting the differences between features, resulting in inadequate feature information fusion. In this paper, we first extract multi-channel features to obtain more comprehensive feature information. We employ dual-channel features in both the visual and auditory modalities to enhance intra-modal feature representation. Secondly, we propose a symmetric mutual promotion (SMP) inter-modal feature fusion method. This method combines symmetric cross-modal attention mechanisms and self-attention mechanisms, where the cross-modal attention mechanism captures useful information from other modalities, and the self-attention mechanism models contextual information. This approach promotes the exchange of useful information between modalities, thereby strengthening inter-modal interactions. Furthermore, we integrate intra-modal features and inter-modal fused features, fully leveraging the complementarity of inter-modal feature information while considering feature information differences. Experiments conducted on two benchmark datasets demonstrate the effectiveness and superiority of our proposed method.
Understanding sentiment in multimodal conversations is a complex yet crucial challenge toward building emotionally intelligent AI systems. The Multimodal Conversational Aspect-based Sentiment Analysis (MCABSA) Challenge invited participants to tackle two demanding subtasks: (1) extracting a comprehensive sentiment sextuple, including holder, target, aspect, opinion, sentiment, and rationale from multi-speaker dialogues, and (2) detecting sentiment flipping, which detects dynamic sentiment shifts and their underlying triggers. For Subtask-I, in the present paper, we designed a structured prompting pipeline that guided large language models (LLMs) to sequentially extract sentiment components with refined contextual understanding. For Subtask-II, we further leveraged the complementary strengths of three LLMs through ensembling to robustly identify sentiment transitions and their triggers. Our system achieved a 47.38% average score on Subtask-I and a 74.12% exact match F1 on Subtask-II, showing the effectiveness of step-wise refinement and ensemble strategies in rich, multimodal sentiment analysis tasks.
Log anomaly detection is crucial for preserving the security of operating systems. Depending on the source of log data collection, various information is recorded in logs that can be considered log modalities. In light of this intuition, unimodal methods often struggle by ignoring the different modalities of log data. Meanwhile, multimodal methods fail to handle the interactions between these modalities. Applying multimodal sentiment analysis to log anomaly detection, we propose CoLog, a framework that collaboratively encodes logs utilizing various modalities. CoLog utilizes collaborative transformers and multi-head impressed attention to learn interactions among several modalities, ensuring comprehensive anomaly detection. To handle the heterogeneity caused by these interactions, CoLog incorporates a modality adaptation layer, which adapts the representations from different log modalities. This methodology enables CoLog to learn nuanced patterns and dependencies within the data, enhancing its anomaly detection capabilities. Extensive experiments demonstrate CoLog's superiority over existing state-of-the-art methods. Furthermore, in detecting both point and collective anomalies, CoLog achieves a mean precision of 99.63%, a mean recall of 99.59%, and a mean F1 score of 99.61% across seven benchmark datasets for log-based anomaly detection. The comprehensive detection capabilities of CoLog make it highly suitable for cybersecurity, system monitoring, and operational efficiency. CoLog represents a significant advancement in log anomaly detection, providing a sophisticated and effective solution to point and collective anomaly detection through a unified framework and a solution to the complex challenges automatic log data analysis poses. We also provide the implementation of CoLog at https://github.com/NasirzadehMoh/CoLog.